Simple cubic graphs with no short traveling salesman tour

نویسندگان

  • Robert Lukot'ka
  • Ján Mazák
چکیده

Let tsp(G) denote the length of a shortest travelling salesman tour in a graph G. We prove that for any ε > 0, there exists a simple 2-connected planar cubic graph G1 such that tsp(G1) ≥ (1.25 − ε) · |V (G1)|, a simple 2-connected bipartite cubic graph G2 such that tsp(G2) ≥ (1.2 − ε) · |V (G2)|, and a simple 3-connected cubic graph G3 such that tsp(G3) ≥ (1.125− ε) · |V (G3)|.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Approximations for Cubic and Cubic Bipartite TSP

We show improved approximation guarantees for the traveling salesman problem on cubic graphs, and cubic bipartite graphs. For cubic bipartite graphs with n nodes, we improve on recent results of Karp and Ravi (2014) by giving a simple “local improvement” algorithm that finds a tour of length at most 5/4n − 2. For 2-connected cubic graphs, we show that the techniques of Mömke and Svensson (2011)...

متن کامل

Improved Approximations for Cubic Bipartite and Cubic TSP

We show improved approximation guarantees for the traveling salesman problem on cubic bipartite graphs and cubic graphs. For cubic bipartite graphs with n nodes, we improve on recent results of Karp and Ravi by giving a “local improvement” algorithm that finds a tour of length at most 5/4n − 2. For 2-connected cubic graphs, we show that the techniques of Mömke and Svensson can be combined with ...

متن کامل

Characterizations of Natural Submodular Graphs: a Polynomially Solvable Class of the Tsp

Let G = (V, E) be a graph and w: E -» R+ be a length function. Given S C V, a Steiner tour is a cycle passing at least once through each vertex of S . In this paper we investigate naturally submodular graphs: graphs for which the length function of the Steiner tours is submodular. We provide two characterizations of naturally submodular graphs, an 0(n) time algorithm for identifying such graphs...

متن کامل

INTEGRATING CASE-BASED REASONING, KNOWLEDGE-BASED APPROACH AND TSP ALGORITHM FOR MINIMUM TOUR FINDING

Imagine you have traveled to an unfamiliar city. Before you start your daily tour around the city, you need to know a good route. In Network Theory (NT), this is the traveling salesman problem (TSP). A dynamic programming algorithm is often used for solving this problem. However, when the road network of the city is very complicated and dense, which is usually the case, it will take too long fo...

متن کامل

New Heuristic Algorithms for Solving Single-Vehicle and Multi-Vehicle Generalized Traveling Salesman Problems (GTSP)

Among numerous NP-hard problems, the Traveling Salesman Problem (TSP) has been one of the most explored, yet unknown one. Even a minor modification changes the problem’s status, calling for a different solution. The Generalized Traveling Salesman Problem (GTSP)expands the TSP to a much more complicated form, replacing single nodes with a group or cluster of nodes, where the objective is to fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1712.10167  شماره 

صفحات  -

تاریخ انتشار 2017